
Grammar Systems and Distributed Automata 

With the need to solve different problems within a short time in
 

an 
efficient manner, parallel and distributed computing have become

 essential. Study of such computations in the abstract sense , from 
the formal-language theory point of view, started with the 
development of grammar systems . In classical formal-language 
theory, a language is generated by a single grammar or accepted by 
a single automation. They model a single processor or we can say

 the devices are centralized. Though multi tape Turing machines 
(TMs) try to introduce parallelism in a small way , the finite control 
of the machine is only one. 



The introduction of distributed computing useful in analyzing 
computation in computer networks , distributed databases etc., has 
led to the notions such as distributed parallelism, concurrency , and 
communication. The theory of grammar systems and the  distributed 
automata are formal models for distributed computing, where these 
notions could be formally defined and analyzed. 



CD Grammar Systems

Definition

A CD grammar system of degree n ≥
 

1, is a construct.: 

Where N and T are disjoint alphabets ( non terminals and terminals) ;    

is the start symbol and                  are the finite sets of 
rewriting rules over              . are called components of the 
system. 

Another way of specifying a CD grammar system is : 
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Definition

Let                                              be a CD grammar
 

system. We 
now define different protocols of co-operation.  

1.
 

Normal mode                            is defined by ,          without 
any restriction.  

The student works on the blackboard as long as he wants. 

 1, , , ,........ nGS N T S P P

*

iP
x y 

*
* mod :

iP
e 

Terminating mode                    for each                    the 

terminating derivation by the ith
 

component , denoted by         , is 

defined by               if and only if and there is no                         
with 

 mod :t e  1,....... ,i n

i

t

P


i

t

P
x y

*

iP
x y  *z N T 

.
iP

y z

2.



3 . = k mode : For each                         the k-steps derivation by the

ith
 

component, denoted by          , is defined by               if
 

and only 

if  there are                                       such that   
and for each j , 
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k mode : The  ≥
 

k steps of derivation by the ith
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Definition 

The language generated by a CD grammar system                   

in derivation mode   is :        1, , , ,......, nGS N T S P P f D
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Example 

1. Consider the following CD grammar system : 

    ' '
1 1 2, , , , , , , , , , ,GS S X X Y Y a b c S P P

 ' '
1 , , ,P S S S XY X X Y Y    

 ' '
2 , , ,P X aX Y bY c X a Y bc    

If              mode , the first component derives              the second 
component derives from             , it can switch to first component or 
derive        from X. 

In the first component        can be changed to                can be 
changed to Y or both . The derivation proceeds similarly.  

*f  S XY
',Y bY c

'aX
'X 'X or Y



It is not difficult to see that the language generated is 

 \ , 1 .m n na b c m n 

The same will be true for 

mod , 1 mod , 1 mod , mod 1.t e e e k e for k   

But, if we consider = 2 mode , each component should execute two
 steps . In the first component                         . In the second 

component ,                                                     

Then control goes back to component one where       and      are
 changed to X and Y in two steps.  The derivation proceeds in the

 similar manner. 

S S XY 
' ' ' .XY aX Y aX bY c 

'X 'Y



It is easy to see that the language generated by         in the = 2 mode 
is                               A similar argument holds for  ≥

 
2 –

 
mode also 

and the language generated is the same . 

At most , two steps of derivation can be done in each component . 
Hence , in the case of = k or ≥

 
k mode where k ≥

 
3 , the language 

generated is the empty set. 

1GS
 | 1 .n n na b c n 



2.       2 1 2 3, , , , , ,GS S A a S P P P

 1P S AA 

 2P A S 

 3P A a 

In the * mode                     is generated as the control can switch 
from component to component at any time. 

A similar results holds for                         modes. For  

the language generate is empty as          can be used 
only once in        and               can be used once in       .

 | 2na n 

 1, 1k k   1, ,k 
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1P A a 3P
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In the t mode in                      and if the control goes to       from AA , 
aa is derived . If the control goes to       from AA , SS is derived . 
Now the control has to go to       to

 
proceed with the derivation                

, and if the control goes to       ,    is derived ; if it 
goes to           is derived . It is easy to see that the language generated 
in t mode is                      

1P ,S AA 3P
2P
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3 .      3 1 2 1 2 3, , , , , , , , ,GS S X X a b S P P P

where 

 1 1 1 2 1, ,P S S S X X X X   

 2 1 2 1,P X aX X a  

 3 1 2 1,P X bX X b  

In * mode ,                                                     t mode the language 

generated will be                                          In = 2 mode , each 

component has to execute two steps , so the language generated 

will be   

 1, 1mod , mod 2 ,e k e k   

  *| , ,| | 2 .w w a b w 

  | , .ww w a b 



A similar argument holds for ≥
 

2 steps . For                                             
the language generated is empty , as each component can use at 
most two steps before transferring the control.  

 mod 3 ,k or k es k  

We state some results about the generative power without giving 
proof. The proofs are fairly simple , and can be tried as exercise . It 
can be easily seen that for CD grammars systems working in any of 
the modes defined having regular  , linear , context –

 
sensitive , or 

type 0 components , respectively , the generative power does not
 change ; i.e., they generate the families of regular , linear, context –

 sensitive , or recursively enumerable languages , respectively .



But by the example given , we find that CD grammar systems with 
context –

 
free components can generate context –

 
sensitive languages. 

Let                denote the family of languages generated by CD grammar 
systems with                 context free components  , the number of 
components being at most n . When the number of components is not 
limited , the family is denoted by                   if         are allowed 
the corresponding families are denoted by  

respectively .

 nCD f
free 

 CD f rules 

    ,nCD f and CD f 




PC Grammar systems 

Definition
A PC grammar system of degree n , n ≥

 
1 , is an ( n + 3 ) –

 
tuple

 
: 

    1 1, , , , ,......, , ,n nGP N K T S P S P

Where N is a non -
 

terminal alphabet , T is a terminal alphabet ,            

are query symbols . N,T,K are mutually 
disjoint .      is a finite set of rewriting rules over         
and                for all  

 1 2, ,........ nK Q Q Q
iP ,N K T 

iS N 1 .i n 

GPLet V N K T  



The sets     are called components of the system. The index i of
 points to the ith

 
component      of GP . 

iP iQ
iP

An equivalent representation for GP is  1, , , ,........, ,nN K T G G

where  1 , , , ,1 .i iG N K T S P i n  



Definition 

Given a PC grammar system

    1 1, , , , ..... , ,n nGP N K T S P S P

as above for two n –
 

tuples
 

with            1 2 1, ,........, , ,...... ,n nx x x y y
*, ,1 ,i i GPx y V i n   where 1x  * ,T we write 

   1 1,...., ,......n nx x y y

if one of the two following two cases holds. 

1.
 

For each i ,                              (i.e., no query symbol
 

in xi ) , and 
either               by a rule in 

1 ,| | 0i Ki n x  
i ix y * .i i iP or x y T 

2. There is i ,                such that                 ( i.e., xi

 

has query symbols ). 
Let for each such i ,                                           for  

1 ,i n  | | 0 .i Kx 

1 21 2 1.... , 1
ti i i t i tx z Q z Q z Q z t 

 * ,1 1.iz N T j t   



| | 0,
ji Kx If  for all j , 1 ,j t  then 

1 22 1....
ti i i i t i ty z x z x z x z 

and 
ji jy S

( in returning mode )  and                 ( in non returning mode )                   
if for some j  ,                                 then           .  For all i ,                 

such that yi

 

is not specified above , we have 

j ji iy x 1 .j t 
1 ,| |

ji kj t x   0, i iy x 1 ,i n 

.i iy x

An n-tuple
 

with                is called an instantaneous 
description (ID) (of GP).  

 1,....., nx x *
i GPx V



ix
(b) Communication step : Query symbols occur in some xi . Then, a 
communication step is performed . Each occurrence of        in  is 
replaced by       , provided      does not contain query symbols

 
. In 

essence a component      containing query symbols is modified only 
when all occurrences of query symbols in it refer to strings  without 
occurrences of query symbols .     

jQ

ix
jxjx

 1,........, nx x  1,........ ny yThus an ID                        directly gives rise to an ID  ,if 
either 

(a)Component wise derivation: No query symbol appears in           
; then we have               using a rule in      , if      has a non 
terminal. If 

1,......., nx x
i ix y iP

*
.,i i ix T y x 

ix



In this communication step        replaces the query symbol     . After 
that ,  GS  resumes starting from axiom ( this is called returning 
mode ) or continues from where it was ( this is called non-

 
returning 

mode ) . Communication has priority over rewriting. No rewriting
 

is 
possible as long as one query symbol is present in any component. If 
some query symbols in a component cannot be replaced in a given 
communication step , it may be possible that they can be replaced in 
the next step . When the first component ( master ) has a terminal 
string derivation stops .       is used to represent both rewriting and 
communication steps .       is the reflexive transitive closure of        . 
We write        for returning mode      for non returning mode .

jx jQ

*
r 
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Definition 

The language generated by a PC grammar system GP 
1. In returning mode is : 

      *
* *

1 2| ,..., , ,...., , , ,2r n n i GPr
L GP x T S S x V i n     

2. In non -
 

returning mode is : 

      *
* *

1 2| ,..., , ,...., , ,2nr n n i GPnr
L GP x T S S x V i n      

If a query symbol is present , rewriting is not possible in any 
component. If circular query occurs , communication will not be 
possible and the derivation halts without producing a string for

 
the 

language . 



Circular query means something like the following : 

component i has query symbol         : 

component j has query symbol          : 

and component k has query symbol         : 

this is an example of a cycle query

The first component is called the master and the language 
consists of terminal strings derived there.

Generally , any component can introduce the query symbols . This
 

is 
called non centralized system . If only the first component is allowed 
to introduce query symbols , it is called a centralized system .

jQ

kQ

iQ



A PC grammar system is said to be regular , linear , context 
free , and context sensitive , depending on the type of rules used in 
components . 

There are a number of results on the hierarchy of PC grammar 
systems. Csuhaj

 
Varju

 
et al..,(1997) gave a detailed description of 

these systems.  



Example 

1. Let 

         
 

'
1 1 2 3 1 2 3 1 1 2 2
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3 3
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,
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Consists of rules :

11. S abc
2 2 2

12. S a b c
'

1 13. S aS
3

1 24. S a Q
'
15. S aS

1P



' 3
1 26. S a Q

2
2 37. S b Q

38. S c

 2 2 2P S bS 

 3 3 3P S cS 

     1 1 | 1n n n
r nrL GP L GP a b c n  



derivation stops    1 1,r nrabc L GP L GP

1 2 3S S S
2 2 2

2 3a b c bS cS

   2 2 2
1 1,r nra b c L GP L GP

This can be seen as follows 

31 2

1 2 3

GG G
S S S

2 3abc bS cS



1 2 3

1 2 3

G G G
S S S

3
2 2 3a Q bS cS

3
2 2 3a bS S cS

3 2 2
3 2 3a bb Q bS c S

3 3 2
3 2 3a b c S bS S

3 3 3 2
2 3a b c b S cS in returning mode 



1 2 3S S S
3

2 2 3a Q bS cS
3

2 2 3a bS bS cS
3 2 2 2

3 2 3a bb Q b S c S
3 3 2 2 2

3 2 3a b c S b S c S
3 3 3 3 3

2 3a b c b S c S in non returning mode 



   3 3 3
1 1,r nra b c L GP L GP

1 2 3

1 2 3

G G G
S S S

1 2 3aS bS cS
3 2 2

3 2 3aa Q b S c S
4 2 2

2 2 3a b S S c S
4 2 2 3

3 2 3a b b Q bS c S

4 4 4 2
2 3a b c b S cS in returning mode 

4 2 3
3 2 3a b c c bS S



1 2 3S S S

1 2 3aS bS cS
3 2 2

2 2 3aa Q b S c S
4 2 2 2

2 2 3a b S b S c S
4 2 2 3 3

3 2 3a b b Q b S c S in non returning mode 
4 4 3 3 3

3 2 3a b c S b S c S
4 4 4 4 4

2 3a b c b S c S

   4 4 4
1 1 1, .nra b c L GP L GP



2. Let          2 1 2 1 2 1 1 2 2, , , , , , , , ,GP S S Q Q a b S P S P

where 

 1 1 1 1 1 2,P S S S Q Q  

 2 2 2 2 2 2 2, , ,P S aS S bS S a S b    

      2 2 | ,r nrL GP L GP ww w a b   



We see how abbabb

 

is derived . 

1 2

1 2

G G
S S

1 2S aS

1 2S abS

2 2Q Q abb

However     1 1,r nrabbabb L GP L GP

2abbabb S in returning mode 

abbabb abb in non returning mode 

This type of communication is called communication by request. There is also another way 

 
of communication known as communication by command. ( Dassow

 

and Paun, 1997 ) . A 

 
restricted version of this communication by command is found useful in characterizing the 

 
workload in computer networks ( Arthi

 

et al., 2001 ). 
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