
Grammar Systems and Distributed Automata

With the need to solve different problems within a short time in

an
efficient manner, parallel and distributed computing have become

 essential. Study of such computations in the abstract sense , from
the formal-language theory point of view, started with the
development of grammar systems . In classical formal-language
theory, a language is generated by a single grammar or accepted by
a single automation. They model a single processor or we can say

 the devices are centralized. Though multi tape Turing machines
(TMs) try to introduce parallelism in a small way , the finite control
of the machine is only one.

The introduction of distributed computing useful in analyzing
computation in computer networks , distributed databases etc., has
led to the notions such as distributed parallelism, concurrency , and
communication. The theory of grammar systems and the distributed
automata are formal models for distributed computing, where these
notions could be formally defined and analyzed.

CD Grammar Systems

Definition

A CD grammar system of degree n ≥

1, is a construct.:

Where N and T are disjoint alphabets (non terminals and terminals) ;

is the start symbol and are the finite sets of
rewriting rules over . are called components of the
system.

Another way of specifying a CD grammar system is :

 1, , , ,......, nGS N T S P P

1,....... nP P
N T 1,....... nP P

 1, , , ,......, nGS N T S G G

where , , , ,1 .i iG N T P S i n

S N

Definition

Let be a CD grammar

system. We
now define different protocols of co-operation.

1.

Normal mode is defined by , without
any restriction.

The student works on the blackboard as long as he wants.

 1, , , ,........ nGS N T S P P

*

iP
x y

*
* mod :

iP
e

Terminating mode for each the

terminating derivation by the ith

component , denoted by , is

defined by if and only if and there is no
with

 mod :t e 1,....... ,i n

i

t

P

i

t

P
x y

*

iP
x y *z N T

.
iP

y z

2.

3 . = k mode : For each the k-steps derivation by the

ith

component, denoted by , is defined by if

and only

if there are such that
and for each j ,

 1,......,i n

i

k

P

i

k

P
x y

 *1 1,....... kx x N T 1,i kx x y x
1 j k

1.
i

j jP
x x

4.

≤

k mode : For each component the ≤

k –

steps derivation

by the ith

component denoted by is defined by :

,iP

,
i

k

P

'

' .
i i

k k

P P
x y if and only if x y for somek k

5.

≥

k mode : The ≥

k steps of derivation by the ith

component ,

denoted as is defined by ,
i

k

P

'

' .
i i

k k

P P
x y if and only if x y for somek k

Let *, , , | 1 .D t k k k k

Definition

The language generated by a CD grammar system

in derivation mode is : 1, , , ,......, nGS N T S P P f D

 1 2

*
1 2| , 1,

1 ,1
i i im

f f f

mP P P
f

j

W T S w m
L GS

i n j m

Example

1. Consider the following CD grammar system :

 ' '
1 1 2, , , , , , , , , , ,GS S X X Y Y a b c S P P

 ' '
1 , , ,P S S S XY X X Y Y

 ' '
2 , , ,P X aX Y bY c X a Y bc

If mode , the first component derives the second
component derives from , it can switch to first component or
derive from X.

In the first component can be changed to can be
changed to Y or both . The derivation proceeds similarly.

*f S XY
',Y bY c

'aX
'X 'X or Y

It is not difficult to see that the language generated is

 \ , 1 .m n na b c m n

The same will be true for

mod , 1 mod , 1 mod , mod 1.t e e e k e for k

But, if we consider = 2 mode , each component should execute two
 steps . In the first component . In the second

component ,

Then control goes back to component one where and are
 changed to X and Y in two steps. The derivation proceeds in the

 similar manner.

S S XY
' ' ' .XY aX Y aX bY c

'X 'Y

It is easy to see that the language generated by in the = 2 mode
is A similar argument holds for ≥

2 –

mode also

and the language generated is the same .

At most , two steps of derivation can be done in each component .
Hence , in the case of = k or ≥

k mode where k ≥

3 , the language

generated is the empty set.

1GS
 | 1 .n n na b c n

2. 2 1 2 3, , , , , ,GS S A a S P P P

 1P S AA

 2P A S

 3P A a

In the * mode is generated as the control can switch
from component to component at any time.

A similar results holds for modes. For

the language generate is empty as can be used
only once in and can be used once in .

 | 2na n

 1, 1k k 1, ,k

S AA
1P A a 3P

 2 ,k k

In the t mode in and if the control goes to from AA ,
aa is derived . If the control goes to from AA , SS is derived .
Now the control has to go to to

proceed with the derivation

, and if the control goes to , is derived ; if it
goes to is derived . It is easy to see that the language generated
in t mode is

1P ,S AA 3P
2P

1P

SS AAAA 2P 4S
4

3 ,P a

 2 | 1 .
n

a n

3 . 3 1 2 1 2 3, , , , , , , , ,GS S X X a b S P P P

where

 1 1 1 2 1, ,P S S S X X X X

 2 1 2 1,P X aX X a

 3 1 2 1,P X bX X b

In * mode , t mode the language

generated will be In = 2 mode , each

component has to execute two steps , so the language generated

will be

 1, 1mod , mod 2 ,e k e k

 *| , ,| | 2 .w w a b w

 | , .ww w a b

A similar argument holds for ≥

2 steps . For
the language generated is empty , as each component can use at
most two steps before transferring the control.

 mod 3 ,k or k es k

We state some results about the generative power without giving
proof. The proofs are fairly simple , and can be tried as exercise . It
can be easily seen that for CD grammars systems working in any of
the modes defined having regular , linear , context –

sensitive , or

type 0 components , respectively , the generative power does not
 change ; i.e., they generate the families of regular , linear, context –

 sensitive , or recursively enumerable languages , respectively .

But by the example given , we find that CD grammar systems with
context –

free components can generate context –

sensitive languages.

Let denote the family of languages generated by CD grammar
systems with context free components , the number of
components being at most n . When the number of components is not
limited , the family is denoted by if are allowed
the corresponding families are denoted by

respectively .

 nCD f
free

 CD f rules

 ,nCD f and CD f

PC Grammar systems

Definition
A PC grammar system of degree n , n ≥

1 , is an (n + 3) –

tuple

:

 1 1, , , , ,......, , ,n nGP N K T S P S P

Where N is a non -

terminal alphabet , T is a terminal alphabet ,

are query symbols . N,T,K are mutually
disjoint . is a finite set of rewriting rules over
and for all

 1 2, ,........ nK Q Q Q
iP ,N K T

iS N 1 .i n

GPLet V N K T

The sets are called components of the system. The index i of
 points to the ith

component of GP .

iP iQ
iP

An equivalent representation for GP is 1, , , ,........, ,nN K T G G

where 1 , , , ,1 .i iG N K T S P i n

Definition

Given a PC grammar system

 1 1, , , , , ,n nGP N K T S P S P

as above for two n –

tuples

with 1 2 1, ,........, , ,...... ,n nx x x y y
*, ,1 ,i i GPx y V i n where 1x * ,T we write

 1 1,...., ,......n nx x y y

if one of the two following two cases holds.

1.

For each i , (i.e., no query symbol

in xi) , and
either by a rule in

1 ,| | 0i Ki n x
i ix y * .i i iP or x y T

2. There is i , such that (i.e., xi

has query symbols).
Let for each such i , for

1 ,i n | | 0 .i Kx

1 21 2 1.... , 1
ti i i t i tx z Q z Q z Q z t

 * ,1 1.iz N T j t

| | 0,
ji Kx If for all j , 1 ,j t then

1 22 1....
ti i i i t i ty z x z x z x z

and
ji jy S

(in returning mode) and (in non returning mode)
if for some j , then . For all i ,

such that yi

is not specified above , we have

j ji iy x 1 .j t
1 ,| |

ji kj t x 0, i iy x 1 ,i n

.i iy x

An n-tuple

with is called an instantaneous
description (ID) (of GP).

 1,....., nx x *
i GPx V

ix
(b) Communication step : Query symbols occur in some xi . Then, a
communication step is performed . Each occurrence of in is
replaced by , provided does not contain query symbols

. In

essence a component containing query symbols is modified only
when all occurrences of query symbols in it refer to strings without
occurrences of query symbols .

jQ

ix
jxjx

 1,........, nx x 1,........ ny yThus an ID directly gives rise to an ID ,if
either

(a)Component wise derivation: No query symbol appears in
; then we have using a rule in , if has a non
terminal. If

1,......., nx x
i ix y iP

*
.,i i ix T y x

ix

In this communication step replaces the query symbol . After
that , GS resumes starting from axiom (this is called returning
mode) or continues from where it was (this is called non-

returning

mode) . Communication has priority over rewriting. No rewriting

is
possible as long as one query symbol is present in any component. If
some query symbols in a component cannot be replaced in a given
communication step , it may be possible that they can be replaced in
the next step . When the first component (master) has a terminal
string derivation stops . is used to represent both rewriting and
communication steps . is the reflexive transitive closure of .
We write for returning mode for non returning mode .

jx jQ

*
r

nr

Definition

The language generated by a PC grammar system GP
1. In returning mode is :

 *
* *

1 2| ,..., , ,...., , , ,2r n n i GPr
L GP x T S S x V i n

2. In non -

returning mode is :

 *
* *

1 2| ,..., , ,...., , ,2nr n n i GPnr
L GP x T S S x V i n

If a query symbol is present , rewriting is not possible in any
component. If circular query occurs , communication will not be
possible and the derivation halts without producing a string for

the

language .

Circular query means something like the following :

component i has query symbol :

component j has query symbol :

and component k has query symbol :

this is an example of a cycle query

The first component is called the master and the language
consists of terminal strings derived there.

Generally , any component can introduce the query symbols . This

is
called non centralized system . If only the first component is allowed
to introduce query symbols , it is called a centralized system .

jQ

kQ

iQ

A PC grammar system is said to be regular , linear , context
free , and context sensitive , depending on the type of rules used in
components .

There are a number of results on the hierarchy of PC grammar
systems. Csuhaj

Varju

et al..,(1997) gave a detailed description of

these systems.

Example

1. Let

'
1 1 2 3 1 2 3 1 1 2 2

1

3 3

, , , , , , , , , , , , ,

,

S S S S Q Q Q a b S P S P
GP

S P

Consists of rules :

11. S abc
2 2 2

12. S a b c
'

1 13. S aS
3

1 24. S a Q
'
15. S aS

1P

' 3
1 26. S a Q

2
2 37. S b Q

38. S c

 2 2 2P S bS

 3 3 3P S cS

 1 1 | 1n n n
r nrL GP L GP a b c n

derivation stops 1 1,r nrabc L GP L GP

1 2 3S S S
2 2 2

2 3a b c bS cS

 2 2 2
1 1,r nra b c L GP L GP

This can be seen as follows

31 2

1 2 3

GG G
S S S

2 3abc bS cS

1 2 3

1 2 3

G G G
S S S

3
2 2 3a Q bS cS

3
2 2 3a bS S cS

3 2 2
3 2 3a bb Q bS c S

3 3 2
3 2 3a b c S bS S

3 3 3 2
2 3a b c b S cS in returning mode

1 2 3S S S
3

2 2 3a Q bS cS
3

2 2 3a bS bS cS
3 2 2 2

3 2 3a bb Q b S c S
3 3 2 2 2

3 2 3a b c S b S c S
3 3 3 3 3

2 3a b c b S c S in non returning mode

 3 3 3
1 1,r nra b c L GP L GP

1 2 3

1 2 3

G G G
S S S

1 2 3aS bS cS
3 2 2

3 2 3aa Q b S c S
4 2 2

2 2 3a b S S c S
4 2 2 3

3 2 3a b b Q bS c S

4 4 4 2
2 3a b c b S cS in returning mode

4 2 3
3 2 3a b c c bS S

1 2 3S S S

1 2 3aS bS cS
3 2 2

2 2 3aa Q b S c S
4 2 2 2

2 2 3a b S b S c S
4 2 2 3 3

3 2 3a b b Q b S c S in non returning mode
4 4 3 3 3

3 2 3a b c S b S c S
4 4 4 4 4

2 3a b c b S c S

 4 4 4
1 1 1, .nra b c L GP L GP

2. Let 2 1 2 1 2 1 1 2 2, , , , , , , , ,GP S S Q Q a b S P S P

where

 1 1 1 1 1 2,P S S S Q Q

 2 2 2 2 2 2 2, , ,P S aS S bS S a S b

 2 2 | ,r nrL GP L GP ww w a b

We see how abbabb

is derived .

1 2

1 2

G G
S S

1 2S aS

1 2S abS

2 2Q Q abb

However 1 1,r nrabbabb L GP L GP

2abbabb S in returning mode

abbabb abb in non returning mode

This type of communication is called communication by request. There is also another way

of communication known as communication by command. (Dassow

and Paun, 1997) . A

restricted version of this communication by command is found useful in characterizing the

workload in computer networks (Arthi

et al., 2001).

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33

